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Abstract. Numerical calculations of the temperature dependence of the longitudinal (T −1
1 )

and transverse (T −1
2 ) nuclear spin-relaxation rates for Fe, Co and Ni are performed for both

ferromagnetic and paramagnetic states, using the first-principles density of states and various
approximations of the spin-fluctuation theory. If the spin fluctuations are taken into account, the
quantities (T1T )

−1 and (T2T )
−1 depend significantly on temperature. Near TC in the ferromagnetic

region they increase sharply, the increases being monotonic and similar for the two rates, just as
observed experimentally.

1. Introduction

It is well known that in ferromagnetic metals the contact hyperfine interaction gives the main
contribution to the nuclear spin relaxation (see, e.g., [1–6]). In this case the relaxation rate
is just the Fourier transform of the electron spin correlation function at the nuclear magnetic
resonance (NMR) frequency, which by the fluctuation-dissipation theorem can be expressed
in terms of the magnetic susceptibility [7]. The relation between the nuclear spin-relaxation
rate and magnetic susceptibility permits one to calculate the relaxation rates for ferromagnetic
metals at finite temperatures using the spin-fluctuation theory (SFT) developed by the author
and a co-author in [8, 9] and successfully applied to Fe, Co and Ni in [10].

Unlike the case for simple and non-magnetic transition metals, where the relaxation
rates are proportional to temperature (see, e.g., [11]), for ferromagnetic metals a significant
temperature dependence is found for the quantities (T1T )

−1 and (T2T )
−1 [12, 13]. While a

theoretical explanation of the temperature dependence of the relaxation rates for simple and
non-magnetic transition metals is available [14–16], for ferromagnetic ones it is absent even
at a qualitative level. So, according to Moriya’s estimates [17] (see also [18–20]), for Fe, Co
and Ni the largest contribution to T −1

1 comes just from the orbital (not contact) interaction.
In our opinion, this result is a consequence of the fact that the spin fluctuations increasing
sharply with increasing temperature were not taken into account in [17]. We believe that only
by correctly taking account of the spin fluctuations can one explain the temperature behaviour
of the relaxation rates for ferromagnetic metals properly. We emphasize that by ferromagnetic
metals we always mean the strongly ferromagnetic metals Fe, Co and Ni. For the weakly
ferromagnetic metals, a quite satisfactory treatment of the temperature dependence of the
relaxation rates based on the SFT is already available (see [21] and references therein).

Note that an attempt to take into account the effect of the electron–electron interaction
on the nuclear spin relaxation in metals was undertaken in [7], but within a very simplified
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model: the wavelength- and frequency-dependent magnetic susceptibilities were calculated
within a model of a free-electron gas with interaction of δ-function type. As follows from
the arguments in [7], the relaxation rate T −1

1 is enhanced by the electron–electron interaction.
However, detailed comparison between the theory and the experimental data is absent from [7].
Moreover, at that time, experimental data were available only for multidomain Fe, Co and
Ni [22,23], since they were obtained in zero applied field. (The high-field rates which are two-
to-three times less than the low-field ones [24] are intrinsic relaxation rates for ferromagnetic
metals.)

Finally, calculations of the relaxation rates T −1
1 for most elements as impurities in ferro-

magnetic iron using the KKR–Green’s function method [25] revealed that almost all of the
calculated rates are smaller than the experimental ones. A systematic tendency for theory to
underestimate the experimental rates, including in the case of FeFe, suggested to the authors
of [26–28] that an important relaxation mechanism is missing in the one-electron theory [25].
The contribution of spin fluctuations is a reasonable candidate for providing the missing rate,
and our paper demonstrates this.

2. Theoretical model

2.1. Relaxation rates

The usual quantum mechanical consideration of the contact hyperfine interaction (see, e.g., [6])
gives the following expressions for the longitudinal (T −1

1 ) and transverse (T −1
2 ) nuclear spin-

relaxation rates:

1

T1
= B

∫ ∞

−∞
〈{�Ŝ+

n (t),�Ŝ
−
n (0)}〉eiω0t dt (1)

1

T2
= 1

2T1
+ B

∫ ∞

−∞
〈{�Ŝzn(t),�Ŝzn(0)}〉eiω0t dt (2)

where 〈{�Ŝαn (t),�Ŝβn (0)}〉 is a single-site electron spin correlator and ω0 is the NMR
frequency. The expressions (1) and (2) are derived under the assumption that the hyperfine
magnetic field at a nucleus is proportional to the total spin at a site, and that the constant B
effectively depends on the magnitude of the nuclear spin (not necessarily equal to 1/2). Using
the fluctuation-dissipation theorem, we obtain [29, 30]

1

T1
= Bh̄ coth

h̄ω0

2T
Im χ+−

L (ω0, T )

1

T2
= 1

2T1
+ Bh̄ coth

h̄ω0

2T
Im χzzL (ω0, T )

where χ+−
L and χzzL are the transverse and longitudinal local susceptibilities expressed in units

of g2µ2
B , and T is the temperature in energy units. Since the energy h̄ω0 is close to zero

(h̄ω0 ∼ 10−4–10−5 eV), with account taken of the fact that coth(h̄ω/2T ) 
 2T/h̄ω, we have

1

T1T
= 2Bh̄

Im χ+−
L (ω0, T )

h̄ω0
(3)

1

T2T
= 1

2

1

T1T
+ 2Bh̄

Im χzzL (ω0, T )

h̄ω0
. (4)

Thus, at a fixed temperature the relaxation rates are defined by the slopes of the imaginary
parts of the local susceptibilities near zero.
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As is shown in [29], for the choice of the z-axis along the magnetization direction in the
cubic crystal, the imaginary parts of the enhanced local susceptibilities are calculated from the
formulae

Im χ+−
L = Im χ+−

L0

(1 − uRe χ+−
L0 )

2 + (u Im χ+−
L0 )

2
= 2 Im χxxL0

(1 − 2uRe χxxL0)
2 + (2u Im χxxL0)

2
(5)

Im χzzL = 1

4

Im(χ↑↑
L0 + χ↓↓

L0 )[1 − u2 Re(χ↑↑
L0 χ

↓↓
L0 )] + u Im(χ↑↑

L0 χ
↓↓
L0 )[2 + uRe(χ↑↑

L0 + χ↓↓
L0 )]

[1 − u2 Re(χ↑↑
L0 χ

↓↓
L0 )]

2 + [u2 Im(χ↑↑
L0 χ

↓↓
L0 )]

2

(6)

where χxxL0 and χσσL0 are zero (unenhanced) local susceptibilities, and u is the effective constant
of the electron–electron interaction. At small energies, to the terms linear in ε = h̄ω, taking
into account the expansion

χααL0 (ε) = χααL0 (0) + iϕααL0ε

we obtain from (5) and (6)

Im χ+−
L (ε) = 2ϕxxL0

(1 − 2uχxxL0(0))
2
ε (7)

Im χzzL (ε) = ε
1

4

∑
σ

(
1 + uχσ̄ σ̄L0 (0)

1 − u2χσσL0 (0)χ
σ̄ σ̄
L0 (0)

)2

ϕσσL0 (8)

(σ = ↑,↓ or ±1, and σ̄ denotes −σ ). Substituting (7), (8) into (3), (4) and going over to the
shorter notation of our previous paper [10], where, in addition, all susceptibilities are expressed
in units of g2µ2

B/2, we finally obtain

1

T1T
= c

2ϕxL
(1 − uχxL(0))2

c ≡ Bh̄ (9)

1

T2T
= 1

2

1

T1T
+ c

1

4

∑
σ

(
1 + uχσ̄L (0)/2

1 − u2χσL (0)χ
σ̄
L (0)/4

)2

ϕσL. (10)

From here, in particular, for u → 0, i.e. without allowing for enhancement, it follows that

1

T1T
= c2ϕxL

1

T2T
= 1

2

1

T1T
+ cϕzL (11)

where

ϕzL = 1

4
(ϕ

↑
L + ϕ↓

L). (12)

At first sight, the final expressions for relaxation rates (9), (10) appear to have an
approximate character, since they are based on the linear approximation of the local suscepti-
bilities. However, in numerical calculations the formulae (9), (10) are preferable to the initial
formulae (3)–(6), since the calculation using the formulae (3)–(6) reduces, in fact, to numerical
differentiation, and this is known to be an ill-posed problem. In addition, it is very difficult to
realize the self-consistent calculation of local susceptibilities with a small ε-step.

2.2. Local susceptibilities

A method for self-consistent calculation of magnetic properties of ferromagnetic metals at finite
temperatures, based on the usage of real band structure and spin fluctuations, was developed
in detail in [8, 9]. Here we give only the basic ideas of the method and present the formulae
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necessary for calculation of relaxation rates, or more exactly, self-consistent calculation of
local susceptibilities.

The electron–electron interaction characterized by the intra-atomic electronic repulsion
constant u is replaced by the interaction of electrons with the variable exchange field which is
specified by the mean value 〈Vz〉 and the mean square of the thermal fluctuations of the on-site
exchange field (‘fluctuations’, for short) ζ α ≡ 〈�V 2

α 〉, α = x, z, calculated using the formulae

〈Vz〉 = −uρz ρz = (n↑ − n↓)/2 nσ = N

π

∫
Im gσ (ε)f (ε) dε (13)

ζ α = uT

2λαL

∫ 1

0

1

a2
α + b2

αk
2

2

π
arctan

cα

a2
α + b2

αk
2

3k2 dk. (14)

Here ρz is a mean on-site spin moment, nσ is the number of electrons with spin projection σ ,
N is the number of energy bands,

gσ (ε) =
∫

ν(ε′)
ε − σ 〈Vz〉 −�(σ(ε)− ε′ dε′ (15)

is the mean single-site Green function, f (ε) = [exp((ε−µ)/T ) + 1]−1 is the Fermi function,
a2
α = λα0/λ

α
L, b2

α = (1 − a2
α)/0.6, cα = uϕαLπ

2T/(6λαL), λ
α
0 = 1 − uχα0 (0), λαL = 1 − uχαL(0),

where ν(ε) is the non-magnetic density of states (DOS) per unit cell, band and spin,

�(σ(ε) = gsσ (ε)ζ
z

1 + 2σ 〈Vz〉gsσ (ε)
+ 2gsσ̄ (ε)ζ

x (16)

is the fluctuation contribution to the self-energy part (gsσ (ε) is determined by expression (15)
at �(σ(ε) = 0), χα0 (0) is the static uniform susceptibility determined in the paramagnetic
region (in the ferromagnetic region, λα0 = 0) by numerical differentiation of the spin moment
ρz with respect to the magnetic field h, the mean field 〈Vz〉 is kept fixed:

χz0 (0) = −∂ρz
∂h


 −ρz(〈Vz〉 + h/2)− ρz(〈Vz〉 − h/2)
h

(17)

and χαL(0), ϕ
α
L are the quantities from the expansion of the dynamic local susceptibility

χαL(ε) = χαL(0) + iϕαLε, calculated from the formulae

χxL(0) = −N
π

∫
Im(g↑g↓)f dε ϕxL = N

π

∫
Im g↑ Im g↓

(
−∂f
∂ε

)
dε

χσL (0) = −2N

π

∫
Im g2

σ f dε ϕσL = 2N

π

∫
(Im gσ )

2

(
−∂f
∂ε

)
dε (18)

χzL(0) = 1

4
(χ

↑
L(0) + χ↓

L(0)) ϕzL = 1

4
(ϕ

↑
L + ϕ↓

L).

The equations (13)–(18), complemented by the condition of the conservation of the total
number of electrons:

n↑ + n↓ = ne (19)

which determines the value of the chemical potential µ entering into the Fermi function,
make up a closed system with respect to four variables ζ x , ζ z, 〈Vz〉 and µ. The algorithm
and the details of the calculation for this system are given in the appendix. Note that in the
various approximations of the SFT, only the formula for spin fluctuations ζ α is modified.
In the dynamic non-local approximation (DNA) it has the form (14), and in the static local
approximation (SLA) is simplified to

ζ αSL = uT

2λαL
. (20)
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3. Results and discussion

The initial parameters of the calculation are the electron DOS calculated in the local density
approximation by the KKR method with a self-consistent potential [31] and the experimental
value of the magnetic momentm0 at zero temperature. After elimination of the sp background,
convolution with the Lorentz function of half-width - = 0.01W (W is the bandwidth) and
normalization to one d band of unit width, we obtain the DOSs represented in figures 1, 6 and
8 in [10] for Fe, Co and Ni, respectively. The values of m0 used are given in table 2 in [10].
Since in the present paper the temperature dependence (not numerical values) of the relaxation
rates is investigated, the constant c in the formulae (9)–(11) is taken for simplicity to be equal
to unity.

The results of the calculation of the relaxation rates in the SLA and DNA using the zero
and enhanced susceptibilities are represented in figures 1–6. As can be seen from the figures,
the relaxation rates exhibit qualitatively similar behaviours for all three metals. The quantities
(T1T )

−1 and (T2T )
−1 calculated without allowing for the enhancement depend only slightly

on temperature, which is consistent with the known Korringa formula [14] for the nuclear
spin-relaxation rate for simple metals. If the enhancement is taken into account, the quantities
(T1T )

−1 and (T2T )
−1 considerably increase and manifest significant temperature dependence

in the ferromagnetic region, the increases near TC being monotonic and similar for the two
rates, just as was observed experimentally [13]. For Fe and Ni near TC , the longitudinal and
transverse relaxation rates completely coincide: T −1

1 = T −1
2 .

As can be seen from figures 1, 3 and 5, in the SLA the quantities (T1T )
−1 and (T2T )

−1

depend on temperature too strongly. This is connected with the fact that in the SLA, spin
fluctuations increase linearly with temperature (see (20)), and, as a consequence, over a wide
temperature interval the magnetization decreases too fast.

Let us analyse the results obtained in the DNA (figures 2, 4 and 6) in greater detail. We
begin with the ferromagnetic region. In agreement with experiment [13], at low temperatures
the temperature dependence of the quantities (T1T )

−1 and (T2T )
−1 is weak; at room and

higher temperatures it is considerably enhanced, sharply increasing in the critical region. On
the whole, the temperature dependences of the quantities (T1T )

−1 and (T2T )
−1 are similar for

the three metals. However, for Fe the curve (T1T )
−1 is far above the curve (T2T )

−1; for Co
these curves come together, and for Ni they change places. This is connected with the fact that
in Fe the transverse fluctuations dominate, while in Ni the longitudinal fluctuations dominate,
and in Co the intermediate situation is realized: the transverse and longitudinal fluctuations
are close in value [10].

The strong temperature dependence of the relaxation rates is principally due to resonance
behaviour of the imaginary parts of the enhanced susceptibilities (7) and (8) at low energies.
This behaviour was analysed in detail in [30] with iron as an example.

It should be noted that near TC the relaxation rates calculated in the present paper,
particularly for Co, do not increase as sharply as those in [13]. This is possibly due to the
single-site approximation (SSA), which insufficiently takes into account the space spin-density
correlations. (Compare the results obtained in the DNA with those obtained in the SLA where
the intersite correlations are not taken into account at all.)

In the paramagnetic region, the computed quantities (T1T )
−1 and (T2T )

−1 are equal to
each other, not changing with the increase of temperature for Fe and Ni, and slowly decreasing
for Ni. The experimental data for Co and Ni [12,13] confirm this temperature behaviour. (The
data for paramagnetic iron are absent from the literature.) However, the fact that over a wide
range of temperatures the computed quantities (T1T )

−1 and (T2T )
−1 remain on a level with

critical ones attracts our attention. This is connected with the fact that in the paramagnetic
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Figure 1. The temperature dependence of the longitudinal (T −1
1 ) and transverse (T −1

2 ) nuclear
spin-relaxation rates (divided by T ) for Fe, calculated in the SLA using the zero (—— and - - - -)
and enhanced (· · · · · · and ·······) susceptibilities. (The solid curve coincides with the fine dotted
one.)
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Figure 2. As figure 1, but calculated in the DNA.
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Figure 3. The temperature dependence of the longitudinal (T −1
1 ) and transverse (T −1

2 ) nuclear
spin-relaxation rates (divided by T ) for Co, calculated in the SLA using the zero (—— and - - - -)
and enhanced (· · · · · · and ·······) susceptibilities.
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Figure 4. As figure 3, but calculated in the DNA.
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Figure 5. The temperature dependence of the longitudinal (T −1
1 ) and transverse (T −1

2 ) nuclear
spin-relaxation rates (divided by T ) for Ni, calculated in the SLA using the zero (—— and - - - -)
and enhanced (· · · · · · and ·······) susceptibilities.
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Figure 6. As figure 5, but calculated in the DNA.
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region the imaginary part of the local susceptibility Im χL(ω, T ) with temperature increasing
decreases too slowly. Such behaviour of Im χL(ω, T ) is observed in all local models of the
SFT (see, e.g., [21] and references therein). It is possible that in Fe, Co and Ni the short-range
magnetic order is retained far above TC (see, e.g., [32,33] and references therein). In this case,
the temperature behaviour of the local susceptibility more closely resembles the behaviour of
the static uniform susceptibility which rapidly decreases with increasing temperature.

4. Conclusions

Taking account of spin fluctuations permits one to explain the general temperature behaviour
of the nuclear spin-relaxation rates for Fe, Co and Ni. From the four approximations of the SFT
considered, the DNA turned out to be the best approximation for all three metals. In the DNA
a qualitative agreement with experimental data [12,13] is found. In calculating the relaxation
rates for ferromagnetic metals, one could hardly expect better agreement. Firstly, the SSA used
in our method is not justified for all temperatures: at low temperatures, spin-wave consideration
is preferable [23], and near TC , taking account of the so-called critical spin fluctuations is
preferable [34]. Even in the region of intermediate temperatures where the SSA is most
appropriate, one should not forget the Hubbard model used in this approximation and that the
dependence of the magnetic characteristics upon u is fairly strong [35]. Secondly, in addition to
relaxation due to the electron spin fluctuations, important nuclear relaxation mechanisms due to
the crystal imperfections, e.g. the relaxation due to the magnetic impurities [36], exist. Thirdly,
and above all, the very experimental data on the relaxation rates differ for ferromagnetic metals.
(See, e.g., the data for Ni in figure 5 in [12] and figure 8 in [13].)

As for the principal result of our numerical calculations, it is as follows: the temperature
behaviour of the nuclear spin-relaxation rates for ferromagnetic metals is determined by the
electron–electron correlations; over a wide range of temperatures these correlations can be
adequately described within the SSA of the SFT.
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Appendix. Algorithm and computational details

The equations (13)–(19) represent a system of four non-linear equations for the fluctuations
ζ x and ζ z, the mean exchange field 〈Vz〉, the chemical potential µ and the effective constant u:

ζ x = uT

2λxL
I x (A.1)

ζ z = uT

2λzL
I z (A.2)

〈Vz〉 = −u(n↑ − n↓)/2 (A.3)

ne = n↑ + n↓ (A.4)

where

Iα =
∫ 1

0

1

a2
α + b2

αk
2

2

π
arctan

cα

a2
α + b2

αk
2

3k2 dk 0 < a2
α < 1. (A.5)
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At T = 0, the fluctuations ζ α vanish, and the system of equations (A.1)–(A.4) turn into
the mean-field-theory system of equations (A.3), (A.4). This gives one an opportunity to find
the effective constant u from a known magnetic momentm0 = gµBρz(0) = gµB(n↑ −n↓)/2;
after that the equations (A.1)–(A.4) make up a closed system with respect to the variables
ζ x , ζ z, 〈Vz〉 and µ, which at fixed temperature is simply solved, e.g., by repeatedly using the
bisection method.

For analytic calculation of the integral (A.5), let us replace the variable of integration k by
x = bk and approximate the function 2 arctan(c/(a2 + x2))/π by its two asymptotes matched
(together with their derivatives) at the point c/(a2 + x2) = 1:

I = 3

b3

∫ b

0
dx

x2

a2 + x2




1

2

c

a2 + x2

c

a2 + x2 � 1

1 − 1

2

a2 + x2

c

c

a2 + x2 > 1.

Then, introducing the notation

F1(x) = c

2

∫
x2

(a2 + x2)2
dx = c

2

(
− x

2(a2 + x2)
+

1

2
arctan

x

a

)

F2(x) =
∫

x2

a2 + x2
dx − 1

2c

∫
x2 dx = x − a arctan

x

a
− x3

6c

(A.6)

we finally obtain

I = 3

b3



F1(b) x2

0 � 0

F2(x0) + F1(b)− F1(x0) 0 < x0 < b

F2(b) x0 � b

(A.7)

where x2
0 = c − a2.

The calculation of the Green function (15) straight from the formula

g(z) =
∫
ν(ε′)
z− ε′ dε′ (A.8)

(where z is an arbitrary complex number) is very difficult. Following [30], we obtain a formula
suitable for numerical calculations. For this purpose, using a linear interpolation, we transform
the tabular function ν(ε′) into a piecewise-linear function:

ν(ε′) =
{
ai(ε

′ − εi) + bi εi � ε′ � εi+1

0 ε′ < ε1 and ε′ > εn+1
(A.9)

where ai = (bi+1 − bi)/(εi+1 − εi), bi = ν(εi), i = 1, . . . , n + 1, and n is the number of
intervals. The substitution of (A.9) into (A.8) gives

g(z) =
n∑
i=1

∫ εi+1

εi

ai(ε
′ − εi) + bi
z− ε′ dε′.

After simple calculations with b1 = bn+1 = 0 we obtain

g(z) =
n+1∑
i=1

Ai(z− εi) ln(z− εi) (A.10)

where A1 = a1, Ai = ai − ai−1, i = 2, . . . , n, An+1 = −an.
Repeated calculations of the Fermi integrals (18) with tabular functions also represent

a very complicated problem. A general numerical method for calculation of the integrals,
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involving the Fermi function, was developed in [37]. A simple method for calculation of the
integrals, involving the derivative of the Fermi function, was given in [10]. These methods are
just what we used in the present paper.
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